Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments
نویسندگان
چکیده
Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. These results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.
منابع مشابه
Comparison of changes in cellulose ultrastructure during different pretreatments of poplar
One commonly cited factor that contributes to the recalcitrance of biomass is cellulose crystallinity. The present study aims to establish the effect of several pretreatment technologies on cellulose crystallinity, crystalline allomorph distribution, and cellulose ultrastructure. The observed changes in the cellulose ultrastructure of poplar were also related to changes in enzymatic hydrolysis,...
متن کاملAssessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicat...
متن کاملAn introduction to the special section on application of leading pretreatments to switchgrass by the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI).
Pretreatment is among the most costly steps in the overall biological conversion of cellulosic biomass to fuels and chemicals. Pretreatment also has a profound effect on all other operations from choice and preparation of feedstock all the way to final product recovery and use of process residues. Yet, because cellulosic biomass is naturally resistant to breakdown to release the sugars containe...
متن کاملChemical transformations of Populus trichocarpa during dilute acid pretreatment
In this study, Populus trichocarpa was subjected to dilute acid pretreatment at varying pretreatment times. The three major components of lignocellulosic biomass, namely cellulose, hemicellulose and lignin, were isolated from the starting and dilute acid pretreated poplar. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) techniques were utilized to elucidate structural t...
متن کاملEffects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility.
Corn stover is emerging as a viable feedstock for producing bioethanol from renewable resources. Dilute-acid pretreatment of corn stover can solubilize a significant portion of the hemicellulosic component and enhance the enzymatic digestibility of the remaining cellulose for fermentation into ethanol. In this study, dilute H2SO4 pretreatment of corn stover was performed in a steam explosion re...
متن کامل